激光生物学报杂志

期刊简介

               本刊的前身是《激光生物学》杂志,创刊于1992年。1997年经国家科委和新闻出版署批准改为现刊名,是由中国科协主管、中国遗传学会主办、湖南师范大学承办、华南师范大学激光生命科学研究所、安徽农业大学生命科学学院、上海交通大学激光与光子生物医学研究所、中国海洋大学物理系、福建师范大学激光与光电信息科技学院、甘肃亚盛集团博士后科研工作站北京分站等协办,由国内外有关专家、学者组成的《激光生物学报》编辑委员会编辑部编辑、激光生物学报杂志社出版的学术性刊物。本刊主要刊登以人类、动物、植物和微生物为实验对象的激光(光)生物学、生物光子学、激光(光)生物医学(含光子中医学、光动力疗法、激光整形美容)、放射生物学(含激光育种、辐射育种、空间育种等)、离子束生物工程及其相关的激光生物技术(含微束照射技术、光镊技术、成像技术、光谱技术、共聚焦扫描显微技术、细胞分流技术等)、仪器研制诸领域基础研究和应用研究方面具有原创性的高水平研究论文、专题综述,适量兼登生物物理学、生物化学、遗传学、医学、农学方面的基础研究论文,是目前国际上唯一的一份激光生物学科的专业性学术刊物。 本刊一直被列入国家科技部中国科技论文统计源期刊,并进入中国科技核心期刊、中国核心期刊(遴选)数据库、中国科技论文统计源数据库、中国科学引文数据库、中国期刊全文数据库、中国学术期刊综合评价数据库和万方数据资源系统数字化期刊群;本刊一直被作为源期刊收录的重要检索系统还有:美国《化学文摘》(CA)、俄罗斯《文摘杂志》(AJ)、美国生命科学进展网、中国生物学文摘、中国物理文摘及其数据库、中文生物医学期刊文献数据库、中文科技期刊数据库、中国光学与应用光学文摘等;本刊还是德国国家图书馆的固定收藏刊物。                

医学临床试验的统计分析流程及具体方法详解

时间:2024-03-22 09:49:24

临床试验的统计分析是一个复杂而关键的过程,涉及多个步骤和考虑因素。以下是一般的统计分析流程:

  1. 设定假设:明确研究假设,通常包括零假设(H0,表示没有治疗效果或差异)和备择假设(Ha,表示有治疗效果或差异)。

  2. 数据收集和清洗:收集试验数据,并进行数据清洗,包括处理缺失数据、异常值和数据错误。这是确保数据准确性和可靠性的重要步骤。

  3. 数据描述:生成数据的描述性统计,如均值、中位数、标准差、分布图等,以更好地了解数据的特征。这有助于初步了解数据的分布和潜在的问题。

  4. 统计检验:选择适当的统计检验方法,以检验零假设。选择的方法取决于数据的类型(连续、分类)、试验设计和研究问题。常见的统计检验方法包括t检验、卡方检验、方差分析、生存分析等。这一步是确定治疗效果或差异是否显著的关键。

  5. 置信区间:计算统计结果的置信区间,以提供效应大小的范围估计。通常,如果p值小于事先设定的显著性水平(通常为0.05),则拒绝零假设。置信区间有助于了解治疗效果的可靠性和精确性。

  6. 多重比较校正:如果试验中进行了多重比较(例如,对多个终点或不同剂量进行比较),需要进行多重比较校正,以控制错误发现率。这是避免误导性结论的重要步骤。

此外,在临床试验的统计分析中,还可能涉及其他高级统计方法,如聚类分析、因子分析、相关分析和对应分析等。这些方法可以帮助研究者更深入地了解数据之间的关系和潜在的结构。

需要注意的是,临床试验的统计分析应遵循严格的伦理和法规要求,确保数据的保密性和受试者的权益。同时,统计分析的结果应准确、可靠,并以易于理解的方式呈现给研究者和决策者。


下面我们讲一下临床试验的统计分析的具体方法。


临床试验的统计分析涉及多种具体方法,这些方法的选择取决于研究设计、数据类型和分析目的。以下是一些常用的具体统计分析方法:

  1. 描述性统计:

    • 均值、中位数和众数:用于描述数据的中心位置。

    • 标准差和方差:用于描述数据的离散程度。

    • 最大值、最小值和范围:提供数据的极值和分布宽度信息。

    • 频数分布表和图表(如直方图、箱线图):直观展示数据的分布情况。

  2. 假设检验:

    • t检验:用于比较两组连续变量的均值差异,如治疗前后的血压变化。

    • 卡方检验(χ²检验):用于比较分类变量的频率分布,如不同治疗组的不良反应发生率。

    • 方差分析(ANOVA):用于比较多组连续变量的均值差异,如不同药物剂量下的疗效比较。

    • 非参数检验(如Wilcoxon秩和检验、Mann-Whitney U检验):用于不满足正态分布或方差齐性假设的数据比较。

  3. 置信区间估计:

    • 利用样本数据计算总体参数的置信区间,如治疗效果的95%置信区间。这有助于评估治疗效果的可靠性和精确性。

  4. 回归分析:

    • 线性回归:用于研究一个或多个自变量与因变量之间的线性关系。

    • 逻辑回归:用于研究分类因变量与自变量之间的关系,如预测某种疾病的发生概率。

    • 生存分析回归(如Cox比例风险模型):用于研究生存时间与自变量之间的关系,同时考虑删失数据。

  5. 生存分析:

    • Kaplan-Meier生存曲线:用于估计和比较不同组别的生存率。

    • Log-rank检验:用于比较两组或多组生存曲线的差异显著性。

    • Cox比例风险回归模型:用于分析影响生存时间的因素,并估计风险比(hazard ratio)。

  6. 多重比较校正方法:

    • Bonferroni校正:通过降低显著性水平来控制多重比较中的第一类错误(假阳性)。

    • Hochberg's步骤上升法(Step-up procedures)或Holm's步骤下降法(Step-down procedures):用于控制多重比较中的错误发现率。

  7. 亚组分析和交互作用分析:

    • 利用回归分析或方差分析等方法探索不同亚组(如年龄、性别、疾病严重程度等)的治疗效果差异。

    • 分析治疗因素与其他因素之间的交互作用,以评估治疗效果在不同条件下的变化。

请注意,以上列举的方法并非全部,且在实际应用中需要根据具体的研究设计和数据类型进行选择和调整。此外,在进行临床试验的统计分析时,应遵循严格的伦理和法规要求,确保数据的保密性和受试者的权益。同时,建议咨询专业的统计学家或数据分析师以确保分析的准确性和可靠性。