
期刊简介
本刊的前身是《激光生物学》杂志,创刊于1992年。1997年经国家科委和新闻出版署批准改为现刊名,是由中国科协主管、中国遗传学会主办、湖南师范大学承办、华南师范大学激光生命科学研究所、安徽农业大学生命科学学院、上海交通大学激光与光子生物医学研究所、中国海洋大学物理系、福建师范大学激光与光电信息科技学院、甘肃亚盛集团博士后科研工作站北京分站等协办,由国内外有关专家、学者组成的《激光生物学报》编辑委员会编辑部编辑、激光生物学报杂志社出版的学术性刊物。本刊主要刊登以人类、动物、植物和微生物为实验对象的激光(光)生物学、生物光子学、激光(光)生物医学(含光子中医学、光动力疗法、激光整形美容)、放射生物学(含激光育种、辐射育种、空间育种等)、离子束生物工程及其相关的激光生物技术(含微束照射技术、光镊技术、成像技术、光谱技术、共聚焦扫描显微技术、细胞分流技术等)、仪器研制诸领域基础研究和应用研究方面具有原创性的高水平研究论文、专题综述,适量兼登生物物理学、生物化学、遗传学、医学、农学方面的基础研究论文,是目前国际上唯一的一份激光生物学科的专业性学术刊物。 本刊一直被列入国家科技部中国科技论文统计源期刊,并进入中国科技核心期刊、中国核心期刊(遴选)数据库、中国科技论文统计源数据库、中国科学引文数据库、中国期刊全文数据库、中国学术期刊综合评价数据库和万方数据资源系统数字化期刊群;本刊一直被作为源期刊收录的重要检索系统还有:美国《化学文摘》(CA)、俄罗斯《文摘杂志》(AJ)、美国生命科学进展网、中国生物学文摘、中国物理文摘及其数据库、中文生物医学期刊文献数据库、中文科技期刊数据库、中国光学与应用光学文摘等;本刊还是德国国家图书馆的固定收藏刊物。
常用的医学图像处理算法
时间:2024-02-27 11:24:18
常用的医学图像处理算法有很多种,下面列举一些主要的算法:
图像预处理算法:包括滤波、平滑、增强等操作,用于改善图像质量,减少噪声,增强感兴趣区域等。例如,中值滤波、高斯滤波等可以用于去除图像中的噪声;直方图均衡化可以用于增强图像的对比度。
图像分割算法:用于将图像中的不同区域或目标分离开来。常见的分割算法有阈值分割、边缘检测、区域生长、分水岭算法等。这些算法可以根据像素灰度值、颜色、纹理等特征将图像划分为不同的区域。
特征提取算法:用于从图像中提取出有意义的特征,以便于后续的分类、识别或量化分析。常见的特征包括形状特征、纹理特征、颜色特征等。这些特征可以通过不同的算法进行提取,如SIFT、SURF、HOG等。
图像配准算法:用于将两幅或多幅医学图像进行对齐,以便于比较和分析。图像配准通常涉及到图像变换(如平移、旋转、缩放等)和相似性度量(如互信息、均方误差等)。
图像融合算法:用于将多源或多时相的医学图像融合在一起,以提供更全面的信息。图像融合可以通过像素级融合、特征级融合或决策级融合等方法实现。
三维重建算法:用于从二维医学图像序列中重建出三维结构。常见的三维重建算法有体绘制和面绘制两种。体绘制通过计算光线穿过体数据的累积颜色来生成三维图像;而面绘制则通过提取体数据的等值面或轮廓线来生成三维表面模型。
深度学习算法:近年来,深度学习在医学图像处理领域取得了显著的进展。通过训练深度神经网络模型(如卷积神经网络CNN),可以自动学习从医学图像中提取特征和进行分类或分割等任务。深度学习算法在医学图像识别、病变检测、病灶定位等方面具有广泛的应用前景。
以上列举的算法只是医学图像处理领域中的一部分,实际上还有很多其他的算法和技术可以根据具体的应用需求进行选择和使用。